FP1 Linear Laws Questions

6 [Figure 1 and Figure 2, printed on the insert, are provided for use in this question.]

The variables x and y are known to be related by an equation of the form

$$y = kx^n$$

where k and n are constants.

Experimental evidence has provided the following approximate values:

x	4	17	150	300
У	1.8	5.0	30	50

(a) Complete the table in **Figure 1**, showing values of X and Y, where

 $X = \log_{10} x$ and $Y = \log_{10} y$

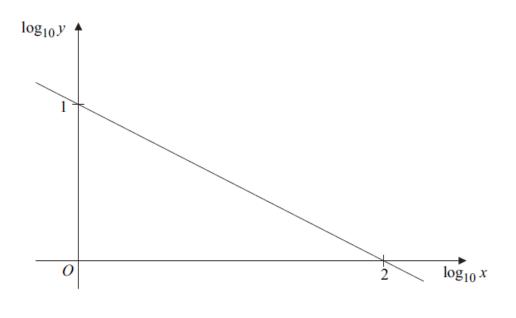
Give each value to two decimal places.

(b) Show that if $y = kx^n$, then X and Y must satisfy an equation of the form

$$Y = aX + b \tag{3 marks}$$

(c) Draw on **Figure 2** a linear graph relating X and Y. (3 marks)

- (d) Find an estimate for the value of *n*.
- 4 The variables x and y are related by an equation of the form


$$y = ax^b$$

where a and b are constants.

- (a) Using logarithms to base 10, reduce the relation $y = ax^b$ to a linear law connecting $\log_{10} x$ and $\log_{10} y$. (2 marks)
- (b) The diagram shows the linear graph that results from plotting $\log_{10} y$ against $\log_{10} x$.

(3 marks)

(2 marks)

(4 marks)

5 [Figure 1 and Figure 2, printed on the insert, are provided for use in this question.]

The variables x and y are known to be related by an equation of the form

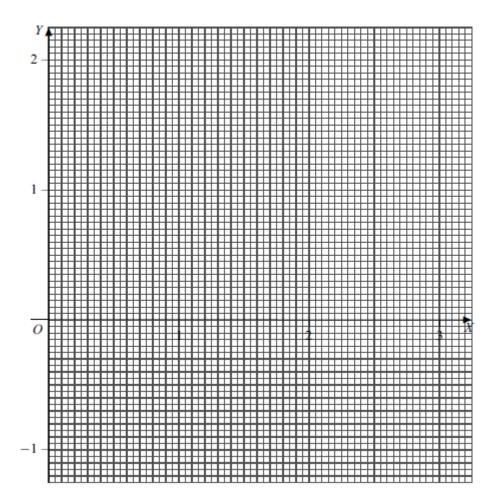
$$y = ab^x$$

where a and b are constants.

The following approximate values of x and y have been found.

x	1	2	3	4
У	3.84	6.14	9.82	15.7

- (a) Complete the table in Figure 1, showing values of x and Y, where $Y = \log_{10} y$. Give each value of Y to three decimal places. (2 marks)
- (b) Show that, if $y = ab^x$, then x and Y must satisfy an equation of the form


$$Y = mx + c \tag{3 marks}$$

- (c) Draw on Figure 2 a linear graph relating x and Y. (2 marks)
- (d) Hence find estimates for the values of a and b. (4 marks)

Figure 1 (for use in Question 6)

X	0.60	2.48
Y	0.26	1.70

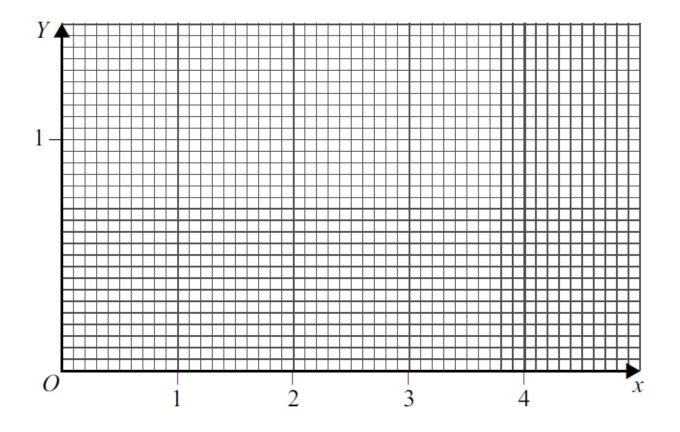

Figure 2 (for use in Question 6)

Figure 1 (for use in Question 5)

x	1	2	3	4
Y	0.584			

Figure 2 (for use in Question 5)

FP1 Linear Laws Answers

6(a)	X values 1.23, 2.18			
	Y values 0.70, 1.48	B3,2,1	3	-1 for each error
(b)	$\lg y = \lg k + \lg x^n$	M1		
	$\lg x^n = n \lg x$	M1		
	So $Y = nX + \lg k$	A1	3	
(c)	Four points plotted	B2,1√		B1 if one error here;
				ft wrong values in (a)
	Good straight line drawn	B1√	3	ft incorrect points (approx collinear)
(d)	Method for gradient	M1		
	Estimate for n	A1√	2	Allow AWRT 0.75 - 0.78; ft grad of
				candidate's graph
	Total		11	

4(a)	$\lg y = \lg a + b \lg x$	M1A1	2	M1 for use of one log law
(b)	Use of above result	M1		
	a = 10	A1		
	b = gradient	m1		OE; PI by answer $\pm \frac{1}{2}$
	$\ldots = -\frac{1}{2}$	A1	4	
	Total		6	

5(a)	Values 0.788, 0.992, 1.196 in table	B2,1	2	B1 if one correct (or if wrong number of dp given)
(b)	$\lg ab^x = \lg a + \lg b^x$	M1		
	$lg b^{x} = x lg b$ So $Y = (lg b) x + lg a$	M1 A1	3	Allow NMS
(c)	^y ↑			
		B1F		Four points plotted; ft wrong values in (a)
		B1F	2	Good straight line drawn; ft incorrect
				points
(d)	<i>a</i> = antilog of <i>y</i> -intercept	M1A1		Accept 2.23 to 2.52
	b = antilog of gradient	M1A1	4	Accept 1.58 to 1.62
	Total		11	